光刻工艺是利用类似照相制版的原理,在半导体晶片表面的掩膜层上面刻蚀精细图形的表面加工技术。也就是使用可见光和紫外光线把电路图案投影“印刷”到覆有感光材料的硅晶片表面,再经过蚀刻工艺去除无用部分,所剩就是电路本身了。光刻工艺的流程中有制版、硅片氧化、涂胶、曝光、显影、腐蚀、去胶等。
光刻是制作半导体器件和集成电路的关键工艺。自20世纪60年代以来,都是用带有图形的掩膜覆盖在被加工的半导体芯片表面,制作出半导体器件的不同工作区。随着集成电路所包含的器件越来越多,要求单个器件尺寸及其间隔越来越小,所以常以光刻所能分辨的最小线条宽度来标志集成电路的工艺水平。国际上较先进的集成电路生产线是1微米线,即光刻的分辨线宽为1微米。日本两家公司成功地应用加速器所产生的同步辐射X射线进行投影式光刻,制成了线宽为0.1微米的微细布线,使光刻技术达到新的水平。
目 录
一、激光加工的起源和原理-------------------------------------------------------5
二、激光加工的特点---------------------------------------------------------------5
三、激光加工的应用---------------------------------------------------------------6
四、激光的发展趋势---------------------------------------------------------------7
五、结论-----------------------------------------------------------------------------8
六、致谢-----------------------------------------------------------------------------9
现代制造技术特种加工
---激光加工
1、激光加工的起源和原理
随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革
激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
2、激光加工的特点
激光具有的宝贵特性决定了激光在加工领域存在的优势:
2.1由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。
2.2它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。
2.3激光加工过程中无“刀具”磨损,无“切削力”作用于工件。
2.4激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。
2.5它可以通过透明介质对密闭容器内的工件进行各种加工。
2.6由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。
2.7使用激光加工,生产效率高,质量可靠,经济效益好。
3、激光加工的应用
激光加工是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度,靠光热效应来加工的。激光加工不需要工具、加工速度快、表面变形小,可加工各种材料。用激光束对材料进行各种加工,如打孔、切割、焊接、热处理等。 某些具有亚稳态能级的物质,在外来光子的激发下会吸收光能,使处于高能级原子的数目大于低能级原子的数目——粒子数反转,若有一束光照射,光子的能量等于这两个能相对应的差,这时就会产生受激辐射,输出大量的光能。激光加工的应用主要有以下几个方面:
3.1、激光打孔
采用脉冲激光器可进行打孔,脉冲宽度为0.1~1毫秒,特别适于打微孔和异形孔,孔径约为0.005~1毫米。激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。
3.2、激光切割、划片与刻字
在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。对小工件的切割常用中、小功率固体激光器或CO2激光器。在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可*保持(图1)。
图1激光刻字
3.3、激光微调
采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。激光微调精度高、速度快,适于大规模生产。利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。
3.4、激光热处理
用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。
激光加工的应用范围还在不断扩大,如用激光制造大规模集成电路,不用抗蚀剂,工序简单,并能进行0.5微米以下图案的高精度蚀刻加工,从而大大增加集成度。此外,激光蒸发、激光区域熔化和激光沉积等新工艺也在发展中。
3.5、激光焊接
激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。
4、激光的发展趋势
激光加工用于再制造业和应用于其他制造业一样,有其不可替代的优点,并优于其它加工技术。激光加工用于再制造业是由相变硬化发展到激光表面合金化和激光熔覆,由激光合金涂层发展到复合涂层及陶瓷涂层,从而使得激光表面加工技术成为再制造的一项重要手段。它主要是采用5KW~10KWCO2高功率激光器及其系统。 与国际上激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的4%左右。主要表现为:*激光加工系统很少,甚至没有;主力激光器不过关;微细激光加工装备缺口较大;而这些领域我国的生产 加工企业正在积蓄力量稳步进入,国内应用市场有很大发展空间。预测今后2-3年内,我国激光加工销售额将会由2008年的35亿人民币上升翻一倍,也就是说会达到70亿元产值。 国内各类制造业接受了激光加工技术,它可使他们的产品增加技术含量,加快产品更新换代,为适应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。目前正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特征的激光,尤其是能适应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。
5结论
本文对激光加工的原理、起源、应用、发展趋势等做了详细的介绍,并结合激光加工等常见的问题作出分析,对激光加工工艺的理解有一定的帮助。
参考文献
[1]刘晋春、赵家齐、赵万生.特种加工(第4版)[M].机械工业出版社,2007.
[2]宋威廉,激光加工技术的发展[M].北京:机械工业出版社,2008.
[3]赵万生.特种加工技术[M].北京:机械工业出版社,2004.
[4]张辽远.现代加工技术[M].北京:机械工业出版社,2002.
[5]刘振辉,杨嘉楷.特种加工[M].重庆:重庆大学出版社,1991.
【新智元导读】 2月25日,清华大学工程物理系唐传祥研究组与合作团队在《自然》上发表研究论文《稳态微聚束原理的实验演示》,报告了一种新型粒子加速器光源「稳态微聚束」的首个原理验证实验。与之相关的极紫外光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
最现代的研究用光源是基于粒子加速器的。
这些都是大型设施,电子在其中被加速到几乎是光速,然后发射出具有特殊性质的光脉冲。
在基于存储环的同步辐射源中,电子束在环中旅行数十亿转,然后在偏转磁体中产生快速连续的非常明亮的光脉冲。
相比之下,自由电子激光器(FEL)中的电子束被线性加速,然后发出单次超亮的类似激光的闪光。
近年来,储能环源以及FEL源促进了许多领域的进步,从对生物和医学问题的深入了解到材料研究、技术开发和量子物理学。
现在,一个中德团队证明,在同步辐射源中可以产生一种脉冲模式,结合了两种系统的优点。
2月25日,清华大学工程物理系教授唐传祥研究组与来自亥姆霍兹柏林材料与能源研究中心(HZB)以及德国联邦物理技术研究院(PTB)的合作团队在Nature上发表了题为《稳态微聚束原理的实验演示》( Experimental demonstration of the mechanism of steady-state microbunching )的论文。
报告了一种新型粒子加速器光源「稳态微聚束」(Steady-state microbunching,SSMB)的首个原理验证实验。
该研究与极紫外(EUV)光刻机光源密切相关,有望为EUV光刻机提供新技术路线。
SSMB光源首个原理验证实验,中德团队登上Nature
同步辐射源提供短而强烈的微束电子,产生的辐射脉冲具有类似于激光的特性(与FEL一样),但也可以按顺序紧密跟随对方(与同步辐射光源一样)。
大约十年前,斯坦福大学教授、清华大学杰出访问教授、*加速器理论家赵午和他的博士生Daniel Ratner以提出了「稳态微束」(SSMB)。
赵午教授
该机制还应该使存储环不仅能以高重复率产生光脉冲,而且能像激光一样产生相干辐射。
来自清华大学的青年物理学家邓秀杰在他的博士论文中提出了这些观点,并对其进行了进一步的理论研究。
2017年,赵午教授联系了HZB的加速器物理学家,他们除了在HZB操作软X射线源BESSY II外,还在PTB操作计量光源(MLS)。
MLS是世界上第一个通过设计优化运行的光源,在所谓的 「低α模式 」下运行。
在这种模式下,电子束可以大大缩短。10多年来,那里的研究人员一直在不断开发这种特殊的运行模式。
HZB的加速器专家Markus Ries解释说:「现在,这项开发工作的成果使我们能够满足具有挑战性的物理要求,在MLS实证确认SSMB原理」。
「SSMB团队中的理论小组在准备阶段就定义了实现机器*性能的物理边界条件。这使我们能够用MLS生成新的机器状态,并与邓秀杰一起对它们进行充分的调整,直到能够检测到我们正在寻找的脉冲模式」,HZB的加速器物理学家Jörg Feikes说。
HZB和PTB专家使用了一种光学激光器,其光波与MLS中的电子束在空间和时间上精确同步耦合。
这就调制了电子束中电子的能量。
「这使得几毫米长的电子束在存储环中正好转了一圈后分裂成微束(只有1微米长),然后发射光脉冲,像激光一样相互放大」,Jörg Feikes解释道。
「对相干态的实验性探测绝非易事,但我们PTB的同事开发了一种新的光学检测装置,成功地进行了探测。」
SSMB概念提出后,赵午持续推动SSMB的研究与国际合作。
2017年,唐传祥与赵午发起该项实验,唐传祥研究组主导完成了实验的理论分析和物理设计,并开发测试实验的激光系统,与合作单位进行实验,并完成了实验数据分析与文章撰写。
揭示SSMB作为未来光子源潜力的关键一步,是在真实机器上演示其机制。在新的论文中,研究人员报告了SSMB机制的实验演示。
SSMB原理验证实验示意图
实验表明,存储在准等时环中的电子束可以产生亚微米级的微束和相干辐射,由1,064纳米波长激光器诱导的能量调制后一个完整的旋转。
结果验证了电子的光相可以在亚激光波长的精度上逐次相关。
SSMB原理验证实验结果
在这种相位相关性的基础上,研究人员通过应用相位锁定的激光器与电子轮流相互作用来实现SSMB。
该图示直观地展示了如何通过激光调制电子束来产生发射激光的微束,是实现基于SSMB的高重复性、高功率光子源的一个里程碑。
有望解决EUV卡脖子难题
没有*的光刻机,是我国半导体行业发展的*瓶颈。
光刻机的曝光分辨率与波长直接相关,半个多世纪以来,光刻机光源的波长不断缩小,芯片工业界公认的新一代主流光刻技术是采用波长为13.5纳米光源的EUV(极紫外光源)光刻。
大功率的EUV光源是EUV光刻机的核心基础。简而言之,光刻机需要的EUV光,要求是波长短,功率大。
EUV光刻机工作相当于用波长只有头发直径一万分之一的极紫外光,在晶圆上「雕刻」电路,最后将让指甲盖大小的芯片包含上百亿个晶体管,这种设备工艺展现了人类 科技 发展的*水平。
而昂贵的EUV光刻机也正是实现7nm的关键设备,目前,荷兰ASML是全球*一家能够量产EUV光刻机的厂商,而由于禁令,我国中芯国际订购的一台EUV仍未到货。
如果中国大陆无法引入ASML的EUV光刻机,则意味着大陆将止步于7nm工艺。
目前ASML公司采用的是高能脉冲激光轰击液态锡靶,形成等离子体然后产生波长13.5纳米的EUV光源,功率约250瓦。而随着芯片工艺节点的不断缩小,预计对EUV光源功率的要求将不断提升,达到千瓦量级。
SSMB光源的潜在应用之一是作为未来EUV光刻机的光源。它们产生的类似激光的辐射也超出了 "光 "的可见光谱,例如在EUV范围内,最后阶段,SSMB源可以提供一种新的辐射特性。脉冲是强烈的、集中的和窄带的。可以说,它们结合了同步辐射光的优势和FEL脉冲的优势。
可以说,基于SSMB的EUV光源有望实现大的平均功率,并具备向更短波长扩展的潜力,为大功率EUV光源的突破提供全新的解决思路。
EUV光刻机的自主研发还有很长的路要走,基于SSMB的EUV光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
关于作者
本文的通讯作者唐传祥教授是清华大学的博士生导师。
1992年9月-1996年3月,考入 清华大学工程物理系硕博连读。1996年3月获得工学博士学位, 博士学位论文为“用于北京自由电子激光装置的多腔热阴极微波电子枪的研究”。
1996年4月获得博士学位后,留校工作。
1996年7月 1998年6月期间,作为访问学者到德国DESY工作2年。在DESY工作期间,主要进行超导加速结构的优化及测量研究,并与J. Sekutowicz, M.Ferrario等合作提出了Superstructure的超导加速结构。
1998年6月回国后,继续在清华大学从事加速器物理、高亮度注入器、汤姆逊散射X射线源、自由电子激光、新加速原理与新型加速结构、电子直线加速器关键物理及技术、加速器应用等方面的研究。
参考资料:
一种将掩膜版的图形转移到衬底表面的图形复制技术,光刻得到的图形一般作为后续工艺的掩膜。
(光致刻蚀剂)是由高分子聚合物、增感剂、溶剂以及其他添加剂组成的混合物,在一定波长的光照射下,高分子聚合物的结构会发生改变。
正胶显影液:碱金属水溶液,如NaOH/NH4OH/TMAH
负胶显影液:有机溶剂,如二甲苯等
氧化层上的正胶:硫酸:双氧水=3:1
金属上的正胶:有机溶剂,如丙酮
氧化层上的负胶:硫酸:双氧水=3:1
金属上的负胶:氯化物溶剂
变性的光刻胶(如作为注入或刻蚀掩膜的光刻胶层):氧等离子体
0.粘附性处理:硅片暴露在六甲基二硅胺烷HMDS蒸汽中,增加光刻胶与硅片的粘附强度
1.匀胶:硅片真空吸附在离心式匀胶机上高速旋转,把滴在硅片表面的光刻胶涂覆均匀
2.前烘:加热蒸发光刻胶部分溶剂,使光刻胶层初步固化
3.对准和曝光:转移图形
4.显影:把硅片放在显影液中溶解去掉正胶光照部分或者负胶非光照部分
5.后烘:加热硅片使光刻胶中的溶剂进一步蒸发,提高掩膜效果
在当前的机械制造技术中,微机械制造工艺属于精度极高的生产体系,其生产精度能够达到微米级别。
该技术最早就是从硅基电路生产技术所中所脱离出来的,该技术的应用对于某些行业的制造发展来说,起到了至关重要的作用。
下文主要针对微机械制造工艺以及应用进行了全面详细的探讨。
一、微机械制造工艺及应用
1.微机械蚀刻技术
微机械生产技术在集成电路生产的使用过程中,相应的加工工艺实际上只需要对于深度在10微米左右的硅片表面加以考虑,但是在对于微机械结构元件进行加工的过程中,必须要完全穿越整个硅片的厚度进行三维式的加工。
同时,依据所使用的蚀刻剂不同,所使用的蚀刻方式也分为湿法蚀刻、干法蚀刻。
在干法蚀刻的过程中,主要是采取各向同性的蚀刻方式,在有需要的情况下,也可以各向异性蚀刻;而湿法蚀刻,实际上就是在蚀刻剂为液体的情况下称之为湿法蚀刻。
在执行各向异性蚀刻工作的过程中,由于单晶硅的原子结构的复杂原因,导致晶面所呈现出的腐蚀速率有着较大的差异性,而在对于晶面的硅衬底采取各项异性腐蚀措施时,会直接沿着晶面停蚀,而面与面之间将会形成一个54.75°的夹角。
而在对于这类型的蚀刻速度以及结晶面所存在的关系加以利用之后,能够促使硅衬底得以加工出多种不同形式的结构。
2.硅表面微机械制造工艺
硅表面微机械制造工艺是微机械器件完全制作在晶片表面而不穿透晶片表面的一种加工技术。
一般来讲,微机械结构常用薄膜材料层来制作,常用的薄膜层材料有:多晶硅、氮化硅、氧化硅、磷硅酸盐玻璃(PSG)、硼硅酸玻璃(BPSG)和金属。
为了制造复杂的微结构,这种薄膜层采用PVD或CVD方法在硅片上沉积,并利用光刻工艺和化学或物理腐蚀工艺来进行结构制造。
在这里,牺牲层起了非常重要的作用。
牺牲层的作用就是在连续加工形成结构层的过程中使结构层与衬底隔开。
牺牲层厚度一般为1一2μm,但也可以更厚些。
沉积后,牺牲层被腐蚀成所需形状。
利用表面微机械制造工艺,可以制造悬式结构,如微型悬臂梁、悬臂、微型桥和微型腔等。
3.LIGA工艺
LIGA工艺本身是属于一种通过X光射线进行三维微结构加工的微机械技术,在这一技术之中,实际上包含了X光深度同步辐射光蚀刻、电铸成型、注塑成型这三个主要的工艺步骤。
而LIGA技术本身实际上就是对于平面IC工艺中所涉及到光刻技术加以借鉴,但是相较而言,LIGA技术对于材料加工过程中所呈现出的深宽要远远大于标准IC生产技术中的薄膜亚微米光刻技术参数。
同时,所能够加工的厚度,也要高于平面工艺典型值2μm的标准;此外,LIGA工艺还可以有效的针对非硅材料执行三维微细加工工作,并且其中所能够使用的材料也更加的广泛。
LIGA技术在微机械加工体系中的应用,有效的推动了MEMS技术本身得以在生产行业中迅速的推广和发展。
4.准LIGA技术
LIGA技术在实际使用的过程中,所呈现出的成本需求较高,并且其中的工艺技术也极为复杂。
为了能够*限度的避免使用同步辐射光所产生的昂贵成本,可以使用近似的紫外线作为代替性的光源。
而这也就是一种类似于LIGA技术的微机械工艺,被称作是LIGA技术,同样能够呈现出深宽比较大大三维微结构加工。
具体加工工艺应用如下:
l)在硅衬底位置上,通过溅射的方式,使得其表面能够形成一层厚度大约在230nm的钨化钦薄膜。
而使用该材料的主要原因是由于,钨化钦所呈现出的附着性极为*,并且还能够当做是光刻过程中起到隔离效果的阻挡层。
而在经过了相应的清洗处理之后,还可以再次镀上一层厚度大约在200nm左右的金,这一层材料主要作为预镀层使用。
2)接着,多次利用旋涂方法,得到约30μm的正性抗蚀层。
3)掩模与抗蚀层密切接触曝光,可得到陡峭的轮廓。
4)光源一般用高压汞灯。
曝光后在碱性显影液中显影,水洗并小合烘干,可得到深宽比大于7的微结构。
5)对光刻后的微结构进行电镀,可得到三维金属微结构,可用湿式蚀刻法或反应性离子蚀刻除去预镀层的金和钨化钦。
5.传统制造工艺
l)超精密机械制造工艺
超精密机械制造是用硬度高于工件的工具,对工件材料进行切削加工。
目前所用的工具有车刀、钻头、铣刀等,如采用钻石刀具微切削技术可加工直径Φ25μm的轴,表面粗糙度值很低;采用微钻头可以加工直径为Φ2.5μm的孔;采用微细磨料加工可提高加工精度和工件表面的质量,加工单位可达0.01μm,表面粗糙度Rao0.005μm。
采用金属丝放电磨削加工可加工出外径Φ0.1mm的注射针头和口径Φ0.6mm的微细喷嘴。
2)特种加工工艺
(l)激光束加工。
激光发生器将高能量密度的激光进一步聚焦后照射到工件表面。
光能被吸收瞬时转化为热能。
根据能量密度的高低,可以实现打小孔、微孔、精密切削、加工精微防伪标记、激光微调、动平衡、打字、焊接和表面热处理。
(2)用隧道显微镜进行微细加工。
该加工方法是将扫描隧道显微镜技术用于分子级加工,其原理是基于量子力学中的隧道效应。
采用*极细(直径为纳米级)的金属探针作为电极,在真空中用压电陶瓷等微位移机构控制针尖和工件表面保持1~10μm的距离,并在探针和工件间加上较低的电压,则在针尖和工件微观表面间,本来是绝缘的势垒,由于量子力学中粒子的波动和电场的畸变,就会产生近场穿透的“隧道”电流,同时使探针相对于工件样品表面作微位移扫描,就可以观察物质表面单个原子或分子的排列状态和电子在表面的行为,获得单个原子在表面排列的信息。
(3)微细电火花加工。
微细电火花加工是在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时、局部高温来溶化和汽化蚀除金属,加工过程中工具与工件间没有宏观的切削力,只要控制精微的单个脉冲放电能量,配合精密微量进给就可以实现极微细的金属材料的去除加工,可加工微细的轴、孔、窄缝、平面、空间曲面等。
二、结语
综上所述,在经过了数十年的发展之后,微机械技术已经从以往单一的三维加工拓展,朝着系统集成的方向发展,从基础性的探索,开始进行实用化的研究。
而在未来的微机械生产技术价值研究上所涉及到的重点环节,就在于微机构三维立体敬爱工、微机械集成、微机械封装技术等。
总之,微机械技术的应用,对于我国高新技术产业的发展来说,起到了至关重要的推动作用。
参考文献
[1]王斌,常秋英,齐烨.激光表面织构化对45~#钢干摩擦特性的影响[J].润滑与密封.2013(12)
[2]袁义坤,赵增辉,王育平,郭钦贤.微机械制造技术发展及其应用现状[J].煤矿机械.2006(09)
[3]张帅,贾育秦.MEMS技术的研究现状和新进展[J].现代制造工程.2005(09)
该步骤利用曝光和显影在光刻胶层上刻画几何图形结构,然后通过刻蚀工艺将光掩模上的图形转移到所在衬底上,也就是可以精确地控制形成图形的形状、大小,此外它可以同时在整个芯片表面产生外形轮廓。
光刻工艺概述:
下面以衬底上金属连接的刻蚀为例讲解光刻过程。
首先,通过金属化过程,在硅衬底上布置一层仅数纳米厚的金属层。然后在这层金属上覆上一层光刻胶。这层光阻剂在曝光(一般是紫外线)后可以被特定溶液(显影液)溶解。
使特定的光波穿过光掩膜照射在光刻胶上,可以对光刻胶进行选择性照射(曝光)。然后使用前面提到的显影液,溶解掉被照射的区域,这样,光掩模上的图形就呈现在光刻胶上。通常还将通过烘干措施,改善剩余部分光刻胶的一些性质。
上述步骤完成后,就可以对衬底进行选择性的刻蚀或离子注入过程,未被溶解的光刻胶将保护衬底在这些过程中不被改变。
刻蚀或离子注入完成后,将进行光刻的最后一步,即将光刻胶去除,以方便进行半导体器件制造的其他步骤。通常,半导体器件制造整个过程中,会进行很多次光刻流程。生产复杂集成电路的工艺过程中可能需要进行多达50步光刻,而生产薄膜所需的光刻次数会少一些。
以上内容参考:百度百科-光刻工艺